Habilitando um Prédio a Localizar Contextualmente Dispositivos Utilizando Redes Sem Fio

Luís Henrique Puhl

Agenda

- A Escolha do tema
- A Hipótese
- A Pesquisa
- Exploração
 - Plataformas
 - Modo monitor
 - Potência de sinal
 - Localização contextual
 - Resultados

- Construção da aplicação
 - Arquitetura geral
 - Apresentação Web
- Conclusão
- Trabalhos futuros

A escolha do tema

O crescimento da internet em geral tem sido exponencial desde sua criação.

A mais nova parte da internet são os pequenos dispositivos e objetos diários que ganharam novas funcionalidades informativas, comunicacionais e computacionais.

A escolha do tema

É previsto que 26 bilhões de dispositivos estejam conectados até 2020.

São até 5 dispositivos por pessoa no planeta.

A maioria das coisas que utilizamos no dia a dia utiliza conexão sem fio.

Estas coisas são úteis somente quando as encontramos

A interação com cada um destas coisas depende de contato virtual ou físico. Encontrar e manter contato com tantas coisas é um desafio.

É possível saber o contexto ou localização de um dispositivo apenas com o resíduo de sua comunicação sem fio?

A pesquisa

Foi realizada busca bibliográfica que revelou uma área jovem e algumas implementações semelhantes.

Optou-se por fazer a localização contextual

Para alcançar o objetivo com baixo custo optou-se por plataformas IoT que oferecem as funcionalidades mínimas necessárias.

Exploração do tema

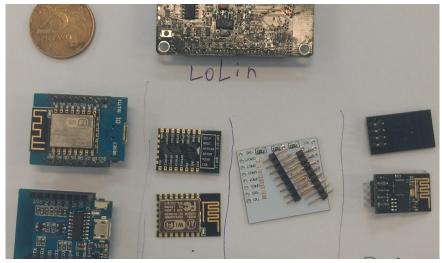
Método de exploração

Foram testadas plataformas e construída uma aplicação demonstrativa.

- Pesquisa de plataformas no mercado local;
- Escolha e aquisição das mais favoráveis;
- Teste de 'modo monitor';
- Teste de RSS;
- Implementação da aplicação sensor, distribuidor e apresentação;

Plataformas exploradas

• ESP8266


- ESP-01;
- o ESP-12e (PCB, LoLin, D1 mini);
- Arduino IDE;
- NodeMCU;
- PFalcon e Espressif SDK.

Raspberry Pi

- Onboard;
- D-Link;
- Ralink (EDUP);

Modo monitor

O Modo Monitor de Radio Frequência permite que um computador com uma interface de comunicação sem fio monitore todo tráfego de redes sem fio.

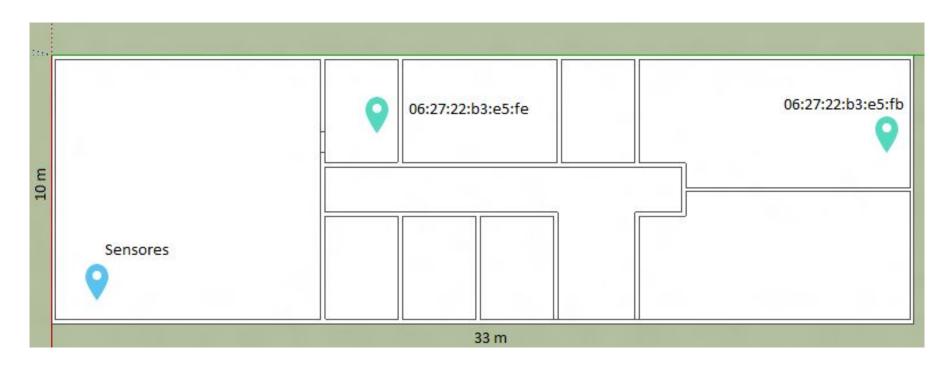
Ou seja, o dispositivo em modo monitor recebe todos os pacotes ao seu alcance que trafegam em redes sem fio mesmo que este computador não pertença a conversa ou a rede em que ela se passa.

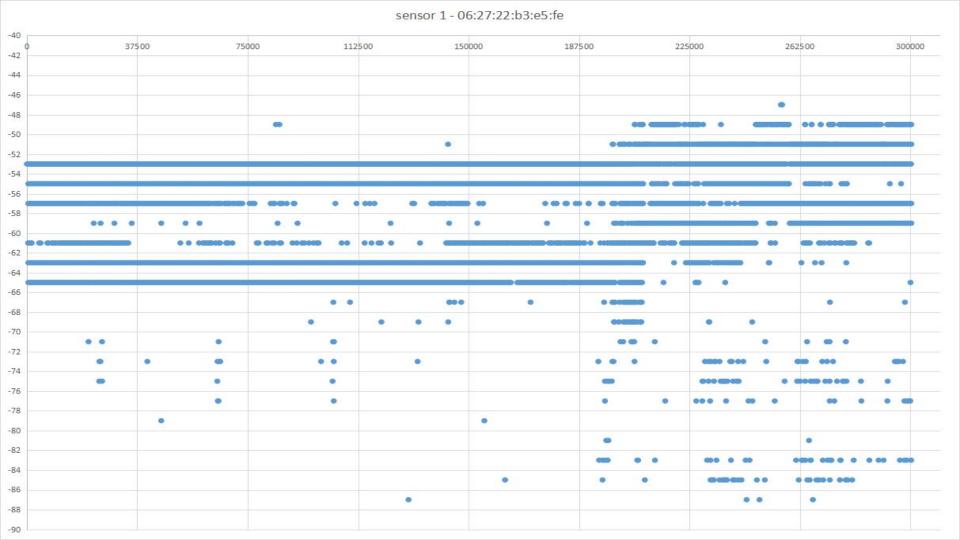
Somente o Raspberry Pi 3 com o adaptador Ralink permitem modo monitor.

Sobre potência de sinal recebido (RSS)

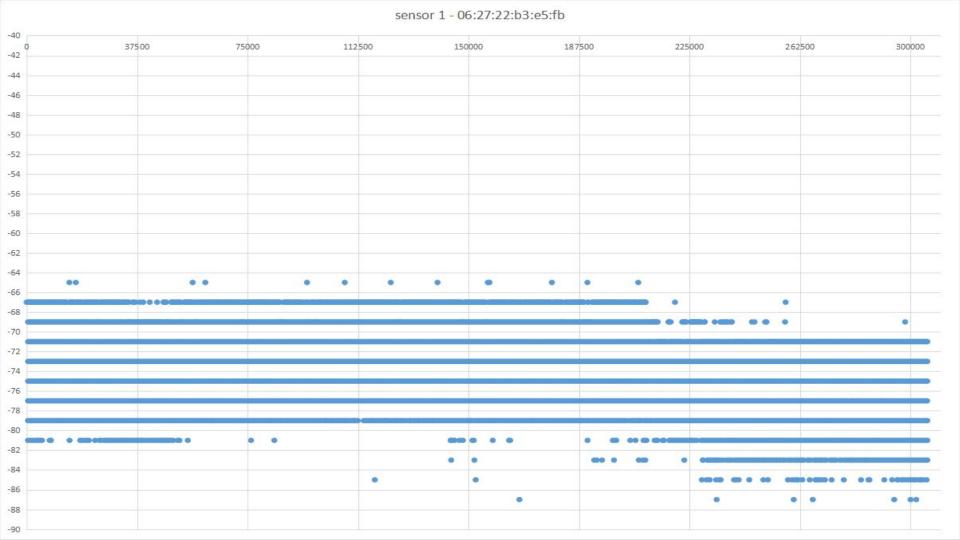
Durante 8 horas todos os pacotes de 2 APs fixos foram capturados

O sensor mostrou o comportamento que era empiricamente esperado

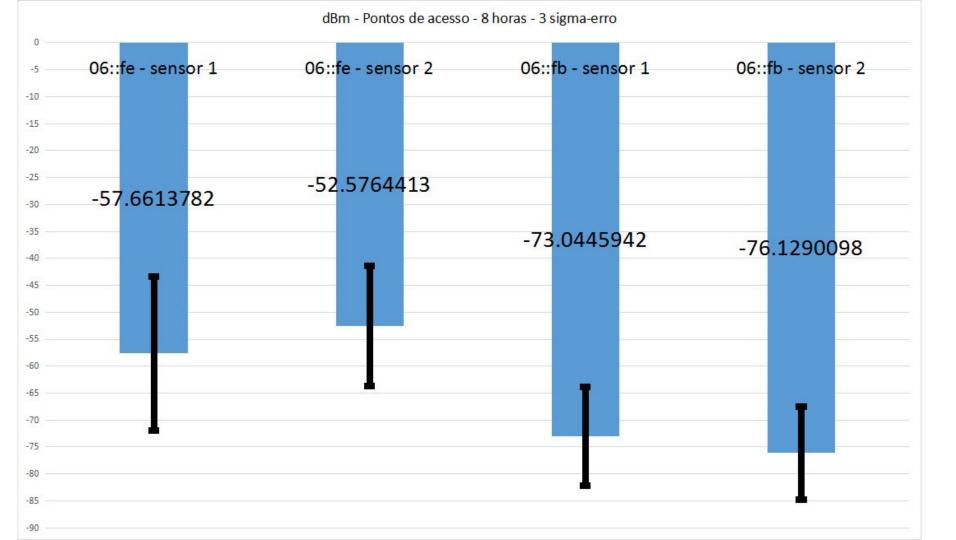

- Nenhum valor par;
- Cinco valores 'constantes' durante toda leitura;
- Valores muito fora do 'padrão'.


RSSI - Potência de Sinal Recebido

Em telecomunicações, *Received Signal Strength Indicator* é a medida de potência presente num sinal de rádio recebido.


Normalmente ela é invisível ao usuário porém, como a potência de sinal pode variar significativamente e afetar a funcionalidade da rede no caso do padrão IEEE 802.11 este valor é medido e disponibilizado ao usuário.

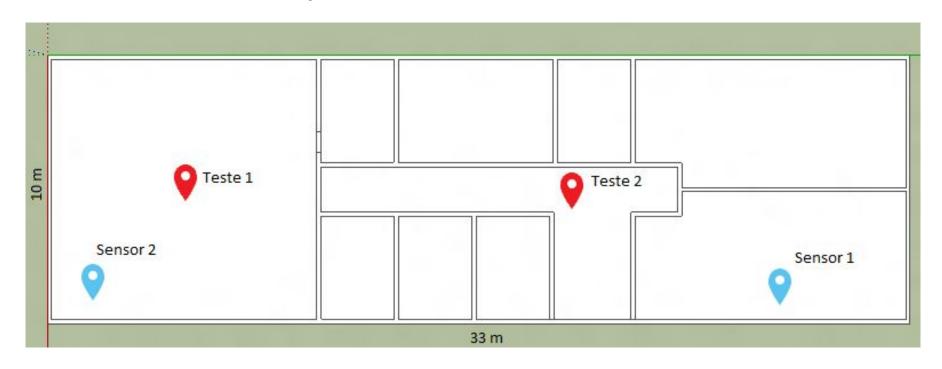
Teste de RSS - Estático



				sensor 2 - 00	5:27:22:b3:e5:fe			
-40 0	37	500 750	000 112	500 150	000 187	7500 22	5000 26	2500 300000
-42 -44								
-46					• •	•		
-48								
-50							•	· · · · · ·
-52		• • • • • • •			•	4606		
-54								
-56								
-58 -60								•••••••
-62			• ••	• •	•	0 000	•	
-64	•	200.00	•			•	•	•
-66			• •	•	•	•		•
-68								
-70			•	•		•		
-72 -74						•		
-74		•						
-78		•						
-80	•		•	•				
-82	•						•	•
-84	•					•		
-86	•	•						•
-88 -90								• •

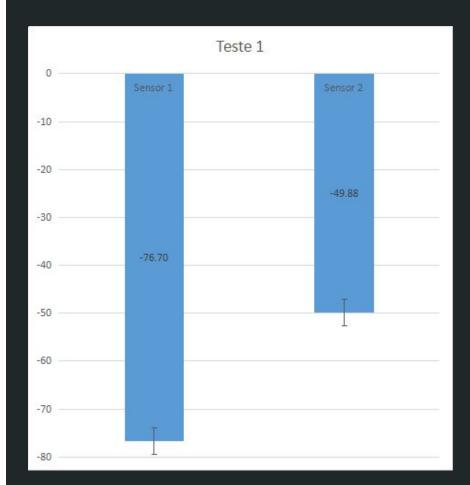
	sensor 2 - 06:27:22:b3:e5:fb							
-40	37	500 750	000 112	500 1500	000 187	500 2250	000 262	500 300000
-42								
-44								
-48								
-50								
-52								
-54								
-56								
-58								
-60								
-62								
-64						•	• •	•
-66	•	•	•			600 1000	-	
-68 -70		• • •	• •		• ••	•		
-72		(1) (2) (3) (4) (4) (4) (4) (4)	60000000 0 0H					
-74								
-76								
-78								
-80				2			• • •	
-82	•	*** *** ****	0 00000 0 00					· ···· /
-84	•					••	•• •	
-86		•				••	• •	•
-88			•		•		•	•
-90								

Com a precisão deste sensor não é possível estimar distâncias com FSPL

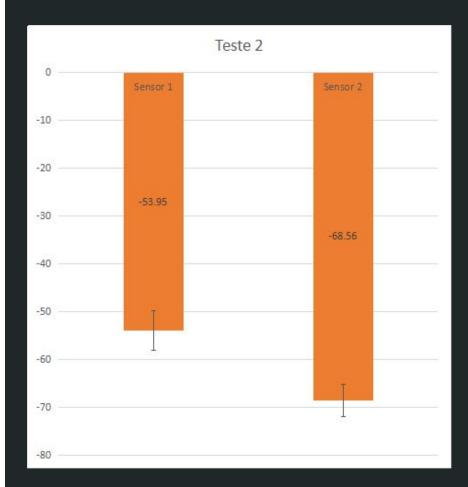

Free Space Path Loss - queda de potência em espaço aberto

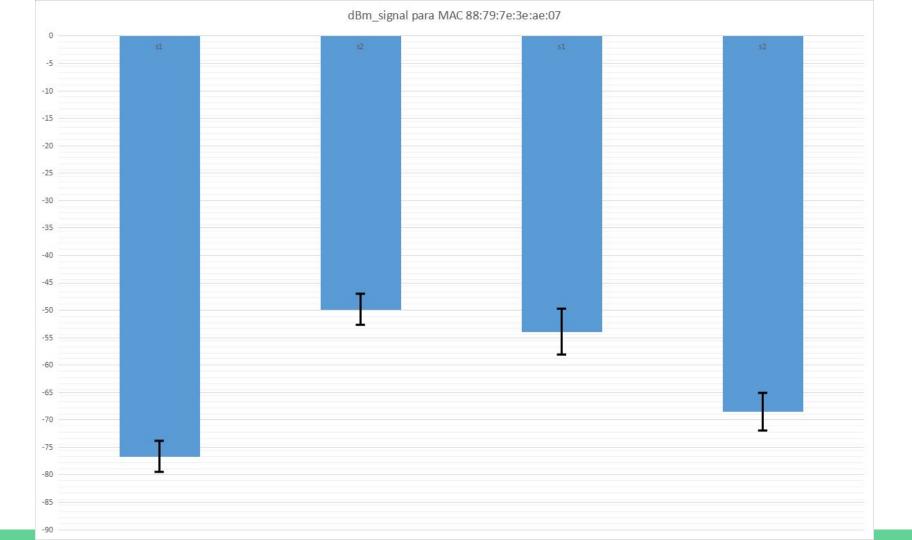
É possível a Localização Contextual?

Para um dispositivo móvel entre dois sensores em duas salas distintas


- Dois sensores em salas distintas;
- Um smartphone em duas posições distintas;
- Uma aplicação que provocasse o uso de Wi-Fi;
- 10 minutos de captura.

Teste com smartphone

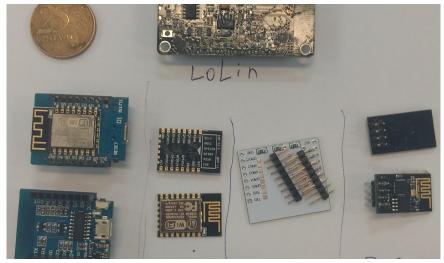

Primeiro teste


Maior potência recebida no sensor 1 em relação ao 2

Segundo teste

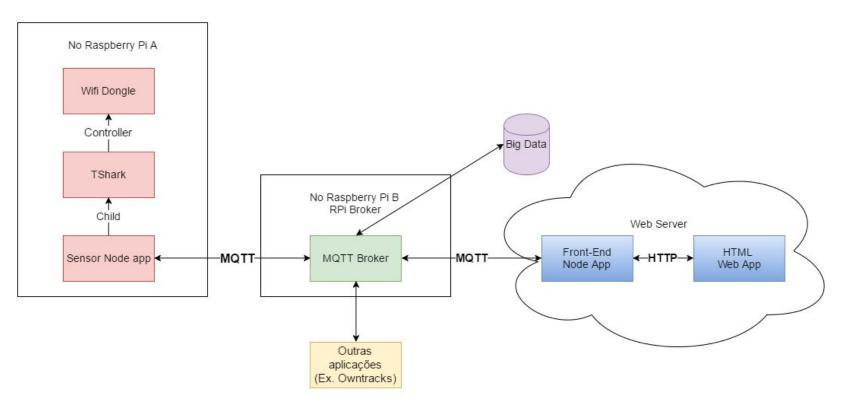
Maior potência recebida no sensor 2 em relação ao 1

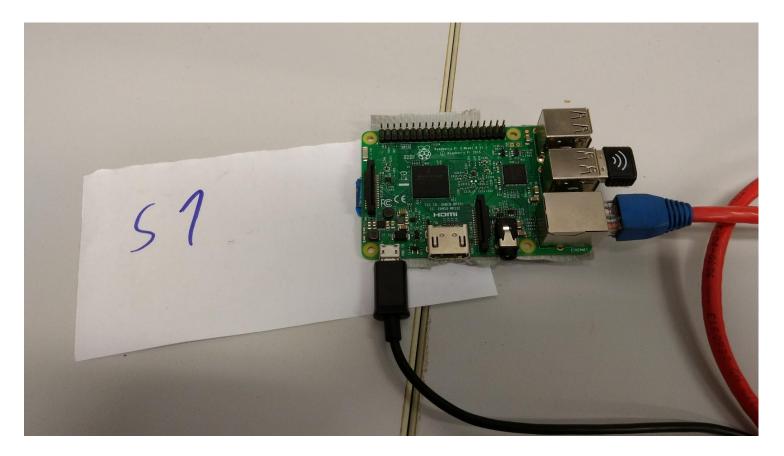
Apesar de não estimar distância com qualidade, pode-se estimar o contexto


O que encontrei

O que aprendi depois dos testes?

- 1. Plataformas são complicadas;
- 2. Alguns adaptadores funcionam;
- Com a plataforma e sensor funcionando a distribuição e apresentação são simples.

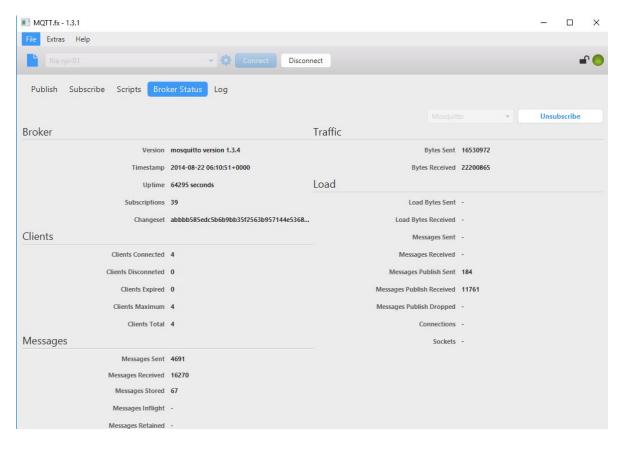

Custo da implementação por plataforma


Sensor								
Plataforma	Raspberi	ry Pi	ESP8266					
Item	Descrição	Custo em R\$	Descrição	Custo em R\$				
Plataforma	RPI3	269,99	D1 mini (ESP-12f)	12,56				
Fonte de alimentação	Fonte Usb iPad	13,99	Fonte Usb Celular com cabo	7,85				
	Cabo Usb A-micro	2,00						
Adaptador Wi-Fi	Edup Usb	16,88						
Memória	SD c10 16GB	21,99						
Total por Sensor		324,85		20,41				

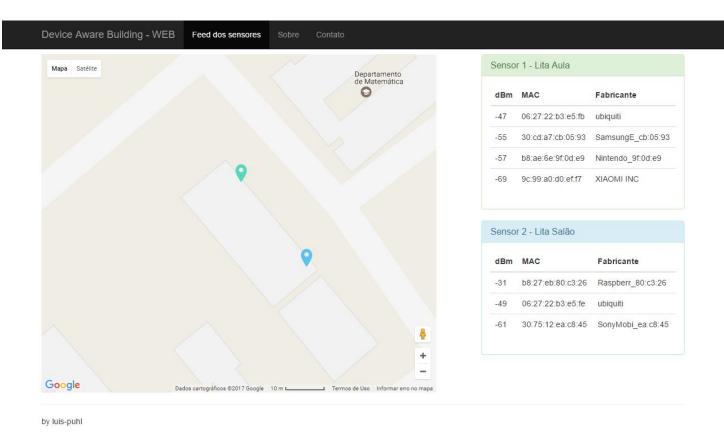
Fonte: Produzido pelo autor.

Construção da Aplicação

Arquitetura geral da aplicação



Sensor 1 com adaptador EDUP



Sensor 2 com adaptador Ralink e fonte

Apresentação das informações dos sensores

Conclusão

A exploração foi bem sucedida: Foram analisadas duas plataformas muito distintas que são encontradas no mercado local.

Foi confirmado que a localização geográfica através de vestígios de comunicação WiFi (FSPL) não é preciso.

Foi demonstrada a construção da aplicação loT de localização contextual com características desejáveis.

O que fazer a seguir?

A implementação em uma plataforma com menor custo (ESP8266) é o atual desafio para este tipo de aplicação

